Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38346534

RESUMEN

In a recent mechanistic study, octopamine was shown to promote proton transport over the branchial epithelium in green crabs, Carcinus maenas. Here, we follow up on this finding by investigating the involvement of octopamine in an environmental and physiological context that challenges acid-base homeostasis, the response to short-term high pCO2 exposure (400 Pa) in a brackish water environment. We show that hyperregulating green crabs experienced a respiratory acidosis as early as 6 h of exposure to hypercapnia, with a rise in hemolymph pCO2 accompanied by a simultaneous drop of hemolymph pH. The slightly delayed increase in hemolymph HCO3- observed after 24 h helped to restore hemolymph pH to initial values by 48 h. Circulating levels of the biogenic amine octopamine were significantly higher in short-term high pCO2 exposed crabs compared to control crabs after 48 h. Whole animal metabolic rates, intracellular levels of octopamine and cAMP, as well as branchial mitochondrial enzyme activities for complex I + III and citrate synthase were unchanged in posterior gill #7 after 48 h of hypercapnia. However, application of octopamine in gill respirometry experiments suppressed branchial metabolic rate in posterior gills of short-term high pCO2 exposed animals. Furthermore, branchial enzyme activity of cytochrome C oxidase decreased in high pCO2 exposed crabs after 48 h. Our results indicate that hyperregulating green crabs are capable of quickly counteracting a hypercapnia-induced respiratory acidosis. The role of octopamine in the acclimation of green crabs to short-term hypercapnia seems to entail the alteration of branchial metabolic pathways, possibly targeting mitochondrial cytochrome C in the gill. Our findings help advancing our current limited understanding of endocrine components in hypercapnia acclimation. SUMMARY STATEMENT: Acid-base compensation upon short-term high pCO2 exposure in hyperregulating green crabs started after 6 h and was accomplished by 48 h with the involvement of the biogenic amine octopamine, accumulation of hemolymph HCO3-, and regulation of mitochondrial complex IV (cytochrome C oxidase).


Asunto(s)
Acidosis Respiratoria , Braquiuros , Decápodos , Animales , Hipercapnia/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Octopamina/metabolismo , Acidosis Respiratoria/metabolismo , Braquiuros/fisiología , Branquias/metabolismo
2.
Sci Total Environ ; 917: 170167, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38242480

RESUMEN

Coastal species are threatened by fishing practices and changing environmental conditions, such as marine heatwaves (MHW). The mechanisms that confer tolerance to such stressors in marine invertebrates are poorly understood. However, differences in tolerance among different species may be attributed to their geographical distribution. To test the tolerance of species occupying different thermal ranges, we used two closely related bivalves the softshell clam Mya arenaria (Linnaeus, 1758), a cold-temperate invader with demonstrated potential for establishment in the Arctic, and the blunt gaper Mya truncata (Linnaeus, 1758), a native polar species. Clams were subjected to a thermal stress, mimicking a MHW, and harvesting stress in a controlled environment. Seven acute temperature changes (2, 7, 12, 17, 22, 27, and 32 °C) were tested at two harvesting disturbance intensities (with, without). Survival was measured after 12 days and three tissues (gills, mantle, and posterior adductor muscle) collected from surviving individuals for targeted metabolomic profiling. MHW tolerance differed significantly between species: 26.9 °C for M. arenaria and 17.8 °C for M. truncata, with a negligeable effect of harvesting. At the upper thermal limit, M. arenaria displayed a more profound metabolomic remodelling when compared to M. truncata, and this varied greatly between tissue types. Network analysis revealed differences in pathway utilization at the upper MHW limit, with M. arenaria displaying a greater reliance on multiple DNA repair and expression and cell signalling pathways, while M. truncata was limited to fewer pathways. This suggests that M. truncata is ill equipped to cope with warming environments. MHW patterning in the Northwest Atlantic may be a strong predictor of population survival and future range shifts in these two clam species. As polar environments undergo faster rates of warming compared to the global average, M. truncata may be outcompeted by M. arenaria expanding into its native range.


Asunto(s)
Mya , Humanos , Animales , Mya/genética , Frío , Organismos Acuáticos , Regiones Árticas , Ecosistema
3.
Glob Chang Biol ; 30(1): e16994, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37916608

RESUMEN

The O2 content of the global ocean has been declining progressively over the past decades, mainly because of human activities and global warming. Nevertheless, how long-term deoxygenation affects macrobenthic communities, sediment biogeochemistry and their mutual feedback remains poorly understood. Here, we evaluate the response of the benthic assemblages and biogeochemical functioning to decreasing O2 concentrations along the persistent bottom-water dissolved O2 gradient of the Estuary and Gulf of St. Lawrence (QC, Canada). We report several of non-linear biodiversity and functional responses to decreasing O2 concentrations, and identify an O2 threshold that occurs at approximately at 63 µM. Below this threshold, macrobenthic community assemblages change, and bioturbation rates drastically decrease to near zero. Consequently, the sequence of electron acceptors used to metabolize the sedimentary organic matter is squeezed towards the sediment surface while reduced compounds accumulate closer (as much as 0.5-2.5 cm depending on the compound) to the sediment-water interface. Our results illustrate the capacity of bioturbating species to compensate for the biogeochemical consequences of hypoxia and can help to predict future changes in benthic ecosystems.


Les teneurs en O2 de l'océan mondial ont diminué progressivement au cours des dernières décennies, principalement en raison des activités humaines et du réchauffement climatique. Néanmoins, les effets à long terme de la désoxygénation sur les communautés macrobenthiques, la biogéochimie des sédiments et leurs interactions mutuelles demeurent mal compris. Dans cette étude, nous évaluons la réponse des assemblages de macrofaune benthiques et de la dynamique biogéochimique sédimentaire aux concentrations décroissantes d'O2 le long du gradient persistant d'O2 dissous dans l'eau de fond de l'estuaire et du golfe du Saint-Laurent (QC, Canada). Nous avons observé plusieurs réponses non linéaires de la biodiversité et de la dynamique biogéochimique sédimentaire face à la diminution de la concentration en O2 avec un seuil situé à environ 63 µM. En dessous de ce seuil, les assemblages de communautés macrobenthiques changent, et les taux de bioturbation diminuent drastiquement pour atteindre des niveaux presque nuls. En conséquence, la séquence des accepteurs d'électrons utilisés pour minéraliser la matière organique sédimentaire se contracte vers la surface du sédiment, tandis que les composés réduits s'accumulent plus près (jusqu'à 0.5 à 2.5 cm selon le composé) de l'interface sédiment-eau. Nos résultats illustrent la capacité des espèces bioturbatrices à compenser les conséquences biogéochimiques de la désoxygénation et peuvent contribuer à prédire les futurs changements dans les écosystèmes benthiques.


Asunto(s)
Ecosistema , Sedimentos Geológicos , Humanos , Sedimentos Geológicos/química , Biodiversidad , Agua , Océanos y Mares
4.
Nat Ecol Evol ; 7(12): 1993-2003, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37932384

RESUMEN

Understanding how temperature determines the distribution of life is necessary to assess species' sensitivities to contemporary climate change. Here, we test the importance of temperature in limiting the geographic ranges of ectotherms by comparing the temperatures and areas that species occupy to the temperatures and areas species could potentially occupy on the basis of their physiological thermal tolerances. We find that marine species across all latitudes and terrestrial species from the tropics occupy temperatures that closely match their thermal tolerances. However, terrestrial species from temperate and polar latitudes are absent from warm, thermally tolerable areas that they could potentially occupy beyond their equatorward range limits, indicating that extreme temperature is often not the factor limiting their distributions at lower latitudes. This matches predictions from the hypothesis that adaptation to cold environments that facilitates survival in temperate and polar regions is associated with a performance trade-off that reduces species' abilities to contend in the tropics, possibly due to biotic exclusion. Our findings predict more direct responses to climate warming of marine ranges and cool range edges of terrestrial species.


Asunto(s)
Cambio Climático , Frío , Temperatura
5.
J Comp Physiol B ; 193(5): 509-522, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37563322

RESUMEN

Crustaceans' endocrinology is a vastly understudied area of research. The major focus of the studies on this topic to date has been on the molting cycle (and in particular, the role of crustacean hyperglycemic hormone (CHH)), as well as the role of other hormones in facilitating physiological phenotypic adjustments to salinity changes. Additionally, while many recent studies have been conducted on the acclimation and adaptation capacity of crustaceans to a changing environment, only few have investigated internal hormonal balance especially with respect to an endocrine response to environmental challenges. Consequently, our study aimed to identify and characterize endocrine components of acid-base regulation in the European green crab, Carcinus maenas. We show that both the biogenic amine octopamine (OCT) and the CHH are regulatory components of branchial acid-base regulation. While OCT suppressed branchial proton excretion, CHH seemed to promote it. Both hormones were also capable of enhancing branchial ammonia excretion. Furthermore, mRNA abundance for branchial receptors (OCT-R), or G-protein receptor activated soluble guanylate cyclase (sGC1b), are affected by environmental change such as elevated pCO2 (hypercapnia) and high environmental ammonia (HEA). Our findings support a role for both OCT and CHH in the general maintenance of steady-state acid-base maintenance in the gill, as well as regulating the acid-base response to environmental challenges that C. maenas encounters on a regular basis in the habitats it dwells in and more so in the future ocean.


Asunto(s)
Braquiuros , Hormonas de Invertebrados , Animales , Braquiuros/fisiología , Octopamina , Amoníaco , Proteínas de Artrópodos
6.
J Exp Biol ; 226(16)2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37497774

RESUMEN

Species with a wide distribution can experience significant regional variation in environmental conditions, to which they can acclimatize or adapt. Consequently, the geographic origin of an organism can influence its responses to environmental changes, and therefore its sensitivity to combined global change drivers. This study aimed at determining the physiological responses of the northern shrimp, Pandalus borealis, at different levels of biological organization and from four different geographic origins, exposed to elevated temperature and low pH to define its sensitivity to future ocean warming and acidification. Shrimp sampled within the northwest Atlantic were exposed for 30 days to combinations of three temperature (2, 6 or 10°C) and two pH levels (7.75 or 7.40). Survival, metabolic rates, whole-organism aerobic performance and cellular energetic capacity were assessed at the end of the exposure. Our results show that shrimp survival was negatively affected by temperature above 6°C and low pH, regardless of their origin. Additionally, shrimp from different origins show overall similar whole-organism performances: aerobic scope increasing with increasing temperature and decreasing with decreasing pH. Finally, the stability of aerobic metabolism appears to be related to cellular adjustments specific to shrimp origin. Our results show that the level of intraspecific variation differs among levels of biological organization: different cellular capacities lead to similar individual performances. Thus, the sensitivity of the northern shrimp to ocean warming and acidification is overall comparable among origins. Nonetheless, shrimp vulnerability to predicted global change scenarios for 2100 could differ among origins owing to different regional environmental conditions.


Asunto(s)
Crustáceos , Agua de Mar , Animales , Temperatura , Concentración de Iones de Hidrógeno , Agua de Mar/química , Océanos y Mares , Calentamiento Global
7.
Sci Rep ; 12(1): 22223, 2022 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-36564436

RESUMEN

Using a targeted metabolomic approach we investigated the effects of low seawater pH on energy metabolism in two late copepodite stages (CIV and CV) of the keystone Arctic copepod species Calanus glacialis. Exposure to decreasing seawater pH (from 8.0 to 7.0) caused increased ATP, ADP and NAD+ and decreased AMP concentrations in stage CIV, and increased ATP and phospho-L-arginine and decreased AMP concentrations in stage CV. Metabolic pathway enrichment analysis showed enrichment of the TCA cycle and a range of amino acid metabolic pathways in both stages. Concentrations of lactate, malate, fumarate and alpha-ketoglutarate (all involved in the TCA cycle) increased in stage CIV, whereas only alpha-ketoglutarate increased in stage CV. Based on the pattern of concentration changes in glucose, pyruvate, TCA cycle metabolites, and free amino acids, we hypothesise that ocean acidification will lead to a shift in energy production from carbohydrate metabolism in the glycolysis toward amino acid metabolism in the TCA cycle and oxidative phosphorylation in stage CIV. In stage CV, concentrations of most of the analysed free fatty acids increased, suggesting in particular that ocean acidification increases the metabolism of stored wax esters in this stage. Moreover, aminoacyl-tRNA biosynthesis was enriched in both stages indicating increased enzyme production to handle low pH stress.


Asunto(s)
Copépodos , Agua de Mar , Animales , Acidificación de los Océanos , Concentración de Iones de Hidrógeno , Ácidos Cetoglutáricos , Adenosina Trifosfato , Aminoácidos
8.
Mar Environ Res ; 181: 105758, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36183457

RESUMEN

An in situ reciprocal transplant experiment was carried around a volcanic CO2 vent to evaluate the anti-predator responses of an anemone goby species exposed to ambient (∼380 µatm) and high (∼850 µatm) CO2 sites. Overall, the anemone gobies displayed largely unaffected behaviors under high-CO2 conditions suggesting an adaptive potential of Gobius incognitus to ocean acidification (OA) conditions. This is also supported by its 3-fold higher density recorded in the field under high CO2. However, while fish exposed to ambient conditions showed an expected reduction in the swimming activity in the proximity of the predator between the pre- and post-exposure period, no such changes were detected in any of the other treatments where fish experienced acute and long-term high CO2. This may suggest an OA effect on the goby antipredator strategy. Our findings contribute to the ongoing debate over the need for realistic predictions of the impacts of expected increased CO2 concentration on fish, providing evidence from a natural high CO2 system.


Asunto(s)
Anemone , Perciformes , Animales , Agua de Mar , Dióxido de Carbono/toxicidad , Concentración de Iones de Hidrógeno , Acidificación de los Océanos , Peces/fisiología
9.
Sci Rep ; 12(1): 11034, 2022 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-35773289

RESUMEN

Giant clams produce massive calcified shells with important biological (e.g., defensive) and ecological (e.g., habitat-forming) properties. Whereas elevated seawater temperature is known to alter giant clam shell structure, no study has examined the effects of a simultaneous increase in seawater temperature and partial pressure of carbon dioxide (pCO2) on shell mineralogical composition in these species. We investigated the effects of 60-days exposure to end-of-the-century projections for seawater temperature (+ 3 °C) and pCO2 (+ 500 µatm) on growth, mineralogy, and organic content of shells and scutes in juvenile Tridacna squamosa giant clams. Elevated temperature had no effect on growth rates or organic content, but did increase shell [24Mg]/[40Ca] as well as [40Ca] in newly-formed scutes. Elevated pCO2 increased shell growth and whole animal mass gain. In addition, we report the first evidence of an effect of elevated pCO2 on element/Ca ratios in giant clam shells, with significantly increased [137Ba]/[40Ca] in newly-formed shells. Simultaneous exposure to both drivers greatly increased inter-individual variation in mineral concentrations and resulted in reduced shell N-content which may signal the onset of physiological stress. Overall, our results indicate a greater influence of pCO2 on shell mineralogy in giant clams than previously recognized.


Asunto(s)
Bivalvos , Cardiidae , Exoesqueleto/química , Animales , Bivalvos/fisiología , Dióxido de Carbono/análisis , Agua de Mar/química , Temperatura
10.
Sci Rep ; 11(1): 23330, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34857790

RESUMEN

Ocean acidification (OA) affects marine organisms through various physiological and biological processes, yet our understanding of how these translate to large-scale population effects remains limited. Here, we integrated laboratory-based experimental results on the life history and physiological responses to OA of the American lobster, Homarus americanus, into a dynamic bioclimatic envelope model to project future climate change effects on species distribution, abundance, and fisheries catch potential. Ocean acidification effects on juvenile stages had the largest stage-specific impacts on the population, while cumulative effects across life stages significantly exerted the greatest impacts, albeit quite minimal. Reducing fishing pressure leads to overall increases in population abundance while setting minimum size limits also results in more higher-priced market-sized lobsters (> 1 lb), and could help mitigate the negative impacts of OA and concurrent stressors (warming, deoxygenation). However, the magnitude of increased effects of climate change overweighs any moderate population gains made by changes in fishing pressure and size limits, reinforcing that reducing greenhouse gas emissions is most pressing and that climate-adaptive fisheries management is necessary as a secondary role to ensure population resiliency. We suggest possible strategies to mitigate impacts by preserving important population demographics.


Asunto(s)
Modelos Teóricos , Nephropidae/fisiología , Alimentos Marinos/economía , Alimentos Marinos/estadística & datos numéricos , Agua de Mar/análisis , Análisis Espacio-Temporal , Animales , Ecosistema , Concentración de Iones de Hidrógeno , Nephropidae/crecimiento & desarrollo , Alimentos Marinos/análisis
11.
Metabolites ; 11(9)2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-34564400

RESUMEN

Bentho-pelagic life cycles are the dominant reproductive strategy in marine invertebrates, providing great dispersal ability, access to different resources, and the opportunity to settle in suitable habitats upon the trigger of environmental cues at key developmental moments. However, free-dispersing larvae can be highly sensitive to environmental changes. Among these, the magnitude and the occurrence of elevated carbon dioxide (CO2) concentrations in oceanic habitats is predicted to exacerbate over the next decades, particularly in coastal areas, reaching levels beyond those historically experienced by most marine organisms. Here, we aimed to determine the sensitivity to elevated pCO2 of successive life stages of a marine invertebrate species with a bentho-pelagic life cycle, exposed continuously during its early ontogeny, whilst providing in-depth insights on their metabolic responses. We selected, as an ideal study species, the American lobster Homarus americanus, and investigated life history traits, whole-organism physiology, and metabolomic fingerprints from larval stage I to juvenile stage V exposed to different pCO2 levels. Current and future ocean acidification scenarios were tested, as well as extreme high pCO2/low pH conditions that are predicted to occur in coastal benthic habitats and with leakages from underwater carbon capture storage (CCS) sites. Larvae demonstrated greater tolerance to elevated pCO2, showing no significant changes in survival, developmental time, morphology, and mineralisation, although they underwent intense metabolomic reprogramming. Conversely, juveniles showed the inverse pattern, with a reduction in survival and an increase in development time at the highest pCO2 levels tested, with no indication of metabolomic reprogramming. Metabolomic sensitivity to elevated pCO2 increased until metamorphosis (between larval and juvenile stages) and decreased afterward, suggesting this transition as a metabolic keystone for marine invertebrates with complex life cycles.

12.
Ecol Evol ; 11(16): 11155-11167, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34429909

RESUMEN

Phenotypic plasticity in parental care investment allows organisms to promptly respond to rapid environmental changes by potentially benefiting offspring survival and thus parental fitness. To date, a knowledge gap exists on whether plasticity in parental care behaviors can mediate responses to climate change in marine ectotherms. Here, we assessed the plasticity of parental care investment under elevated temperatures in a gonochoric marine annelid with biparental care, Ophryotrocha labronica, and investigated its role in maintaining the reproductive success of this species in a warming ocean. We measured the time individuals spent carrying out parental care activities across three phases of embryonic development, as well as the hatching success of the offspring as a proxy for reproductive success, at control (24℃) and elevated (27℃) temperature conditions. Under elevated temperature, we observed: (a) a significant decrease in total parental care activity, underpinned by a decreased in male and simultaneous parental care activity, in the late stage of embryonic development; and (b) a reduction in hatching success that was however not significantly related to changes in parental care activity levels. These findings, along with the observed unaltered somatic growth of parents and decreased brood size, suggest that potential cost-benefit trade-offs between offspring survival (i.e., immediate fitness) and parents' somatic condition (i.e., longer-term fitness potential) may occur under ongoing ocean warming. Finally, our results suggest that plasticity in parental care behavior is a mechanism able to partially mitigate the negative effects of temperature-dependent impacts.

13.
Nat Commun ; 12(1): 1198, 2021 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-33608528

RESUMEN

Understanding how species' thermal limits have evolved across the tree of life is central to predicting species' responses to climate change. Here, using experimentally-derived estimates of thermal tolerance limits for over 2000 terrestrial and aquatic species, we show that most of the variation in thermal tolerance can be attributed to a combination of adaptation to current climatic extremes, and the existence of evolutionary 'attractors' that reflect either boundaries or optima in thermal tolerance limits. Our results also reveal deep-time climate legacies in ectotherms, whereby orders that originated in cold paleoclimates have presently lower cold tolerance limits than those with warm thermal ancestry. Conversely, heat tolerance appears unrelated to climate ancestry. Cold tolerance has evolved more quickly than heat tolerance in endotherms and ectotherms. If the past tempo of evolution for upper thermal limits continues, adaptive responses in thermal limits will have limited potential to rescue the large majority of species given the unprecedented rate of contemporary climate change.


Asunto(s)
Evolución Biológica , Fenómenos Fisiológicos de las Plantas , Termotolerancia/fisiología , Adaptación Fisiológica , Animales , Clima , Cambio Climático , Planeta Tierra , Ecología , Calor , Temperatura
14.
Sci Total Environ ; 764: 142816, 2021 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-33092841

RESUMEN

Tens of thousands of anthropogenic chemicals and wastes enter the marine environment each year as a consequence of the ever-increasing anthropogenic activities and demographic growth of the human population, which is majorly concentrated along coastal areas. Marine ecotoxicology has had a crucial role in helping shed light on the fate of chemicals in the environment, and improving our understanding of how they can affect natural ecosystems. However, chemical contamination is not occurring in isolation, but rather against a rapidly changing environmental horizon. Most environmental studies have been focusing on short-term within-generation responses of single life stages of single species to single stressors. As a consequence, one-dimensional ecotoxicology cannot enable us to appreciate the degree and magnitude of future impacts of chemicals on marine ecosystems. Current approaches that lack an evolutionary perspective within the context of ongoing and future local and global stressors will likely lead us to under or over estimations of the impacts that chemicals will exert on marine organisms. It is therefore urgent to define whether marine organisms can acclimate, i.e. adjust their phenotypes through transgenerational plasticity, or rapidly adapt, i.e. realign the population phenotypic performances to maximize fitness, to the new chemical environment within a selective horizon defined by global changes. To foster a significant advancement in this research area, we review briefly the history of ecotoxicology, synthesis our current understanding of the fate and impact of contaminants under global changes, and critically discuss the benefits and challenges of integrative approaches toward developing an evolutionary perspective in marine ecotoxicology: particularly through a multigenerational approach. The inclusion of multigenerational studies in Ecological Risk Assessment framework (ERA) would provide significant and more accurately information to help predict the risks of pollution in a rapidly changing ocean.


Asunto(s)
Ecosistema , Ecotoxicología , Organismos Acuáticos , Evolución Biológica , Humanos
15.
BMC Genomics ; 21(1): 815, 2020 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-33225885

RESUMEN

BACKGROUND: Annelids are one the most speciose and ecologically diverse groups of metazoans. Although a significant effort has been recently invested in sequencing genomes of a wide array of metazoans, many orders and families within the phylum Annelida are still represented by a single specimen of a single species. The genus of interstitial annelids Ophryotrocha (Dorvilleidae, Errantia, Annelida) is among these neglected groups, despite its extensive use as model organism in numerous studies on the evolution of life history, physiological and ecological traits. To compensate for the paucity of genomic information in this genus, we here obtained novel complete mitochondrial genomes of six Ophryotrocha species using next generation sequencing. In addition, we investigated the evolution of the reproductive mode in the Ophryotrocha genus using a phylogeny based on two mitochondrial markers (COXI and 16S rDNA) and one nuclear fragment (Histone H3). RESULTS: Surprisingly, gene order was not conserved among the six Ophryotrocha species investigated, and varied greatly as compared to those found in other annelid species within the class Errantia. The mitogenome phylogeny for the six Ophryotrocha species displayed a separation of gonochoric and hermaphroditic species. However, this separation was not observed in the phylogeny based on the COX1, 16S rDNA, and H3 genes. Parsimony and Bayesian ancestral trait reconstruction indicated that gonochorism was the most parsimonious ancestral reproductive mode in Ophryotrocha spp. CONCLUSIONS: Our results highlight the remarkably high level of gene order variation among congeneric species, even in annelids. This encourages the need for additional mitogenome sequencing of annelid taxa in order to properly understand its mtDNA evolution, high biodiversity and phylogenetic relationships.


Asunto(s)
Anélidos , Genoma Mitocondrial , Animales , Anélidos/genética , Teorema de Bayes , Evolución Molecular , Reordenamiento Génico , Humanos , Filogenia
16.
Proc Biol Sci ; 287(1927): 20200488, 2020 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-32453989

RESUMEN

Diving as a lifestyle has evolved on multiple occasions when air-breathing terrestrial animals invaded the aquatic realm, and diving performance shapes the ecology and behaviour of all air-breathing aquatic taxa, from small insects to great whales. Using the largest dataset yet assembled, we show that maximum dive duration increases predictably with body mass in both ectotherms and endotherms. Compared to endotherms, ectotherms can remain submerged for longer, but the mass scaling relationship for dive duration is much steeper in endotherms than in ectotherms. These differences in diving allometry can be fully explained by inherent differences between the two groups in their metabolic rate and how metabolism scales with body mass and temperature. Therefore, we suggest that similar constraints on oxygen storage and usage have shaped the evolutionary ecology of diving in all air-breathing animals, irrespective of their evolutionary history and metabolic mode. The steeper scaling relationship between body mass and dive duration in endotherms not only helps explain why the largest extant vertebrate divers are endothermic rather than ectothermic, but also fits well with the emerging consensus that large extinct tetrapod divers (e.g. plesiosaurs, ichthyosaurs and mosasaurs) were endothermic.


Asunto(s)
Evolución Biológica , Buceo , Animales , Ecología , Oxígeno , Consumo de Oxígeno
17.
J Exp Biol ; 223(Pt 8)2020 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-32300042

RESUMEN

Regulation of extracellular acid-base balance, while maintaining energy metabolism, is recognised as an important aspect when defining an organism's sensitivity to environmental changes. This study investigated the haemolymph buffering capacity and energy metabolism (oxygen consumption, haemolymph [l-lactate] and [protein]) in early benthic juveniles (carapace length <40 mm) of the European lobster, Homarus gammarus, exposed to elevated temperature and PCO2 At 13°C, H. gammarus juveniles were able to fully compensate for acid-base disturbances caused by the exposure to elevated seawater PCO2  at levels associated with ocean acidification and carbon dioxide capture and storage (CCS) leakage scenarios, via haemolymph [HCO3-] regulation. However, metabolic rate remained constant and food consumption decreased under elevated PCO2 , indicating reduced energy availability. Juveniles at 17°C showed no ability to actively compensate haemolymph pH, resulting in decreased haemolymph pH particularly under CCS conditions. Early benthic juvenile lobsters at 17°C were not able to increase energy intake to offset increased energy demand and therefore appear to be unable to respond to acid-base disturbances due to increased PCO2 at elevated temperature. Analysis of haemolymph metabolites suggests that, even under control conditions, juveniles were energetically limited. They exhibited high haemolymph [l-lactate], indicating recourse to anaerobic metabolism. Low haemolymph [protein] was linked to minimal non-bicarbonate buffering and reduced oxygen transport capacity. We discuss these results in the context of potential impacts of ongoing ocean change and CCS leakage scenarios on the development of juvenile H. gammarus and future lobster populations and stocks.


Asunto(s)
Dióxido de Carbono , Nephropidae , Equilibrio Ácido-Base , Animales , Concentración de Iones de Hidrógeno , Agua de Mar , Temperatura
18.
Sci Total Environ ; 716: 136610, 2020 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-31982187

RESUMEN

Ocean acidification (OA) along the US West Coast is intensifying faster than observed in the global ocean. This is particularly true in nearshore regions (<200 m) that experience a lower buffering capacity while at the same time providing important habitats for ecologically and economically significant species. While the literature on the effects of OA from laboratory experiments is voluminous, there is little understanding of present-day OA in-situ effects on marine life. Dungeness crab (Metacarcinus magister) is perennially one of the most valuable commercial and recreational fisheries. We focused on establishing OA-related vulnerability of larval crustacean based on mineralogical and elemental carapace to external and internal carapace dissolution by using a combination of different methods ranging from scanning electron microscopy, energy dispersive X-ray spectroscopy, elemental mapping and X-ray diffraction. By integrating carapace features with the chemical observations and biogeochemical model hindcast, we identify the occurrence of external carapace dissolution related to the steepest Ω calcite gradients (∆Ωcal,60) in the water column. Dissolution features are observed across the carapace, pereopods (legs), and around the calcified areas surrounding neuritic canals of mechanoreceptors. The carapace dissolution is the most extensive in the coastal habitats under prolonged (1-month) long exposure, as demonstrated by the use of the model hindcast. Such dissolution has a potential to destabilize mechanoreceptors with important sensory and behavioral functions, a pathway of sensitivity to OA. Carapace dissolution is negatively related to crab larval width, demonstrating a basis for energetic trade-offs. Using a retrospective prediction from a regression models, we estimate an 8.3% increase in external carapace dissolution over the last two decades and identified a set of affected OA-related sublethal pathways to inform future risk assessment studies of Dungeness crabs.


Asunto(s)
Braquiuros , Animales , Concentración de Iones de Hidrógeno , Larva , Mecanorreceptores , Estudios Retrospectivos , Agua de Mar , Solubilidad
19.
Philos Trans R Soc Lond B Biol Sci ; 374(1778): 20190035, 2019 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-31203753

RESUMEN

Global warming appears to favour smaller-bodied organisms, but whether larger species are also more vulnerable to thermal extremes, as suggested for past mass-extinction events, is still an open question. Here, we tested whether interspecific differences in thermal tolerance (heat and cold) of ectotherm organisms are linked to differences in their body mass and genome size (as a proxy for cell size). Since the vulnerability of larger, aquatic taxa to warming has been attributed to the oxygen limitation hypothesis, we also assessed how body mass and genome size modulate thermal tolerance in species with contrasting breathing modes, habitats and life stages. A database with the upper (CTmax) and lower (CTmin) critical thermal limits and their methodological aspects was assembled comprising more than 500 species of ectotherms. Our results demonstrate that thermal tolerance in ectotherms is dependent on body mass and genome size and these relationships became especially evident in prolonged experimental trials where energy efficiency gains importance. During long-term trials, CTmax was impaired in larger-bodied water-breathers, consistent with a role for oxygen limitation. Variation in CTmin was mostly explained by the combined effects of body mass and genome size and it was enhanced in larger-celled, air-breathing species during long-term trials, consistent with a role for depolarization of cell membranes. Our results also highlight the importance of accounting for phylogeny and exposure duration. Especially when considering long-term trials, the observed effects on thermal limits are more in line with the warming-induced reduction in body mass observed during long-term rearing experiments. This article is part of the theme issue 'Physiological diversity, biodiversity patterns and global climate change: testing key hypotheses involving temperature and oxygen'.


Asunto(s)
Eucariontes/crecimiento & desarrollo , Eucariontes/fisiología , Tamaño del Genoma , Animales , Tamaño Corporal , Cambio Climático , Ecosistema , Eucariontes/clasificación , Eucariontes/genética , Calentamiento Global , Filogenia , Respiración , Termotolerancia
20.
Philos Trans R Soc Lond B Biol Sci ; 374(1778): 20190036, 2019 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-31203755

RESUMEN

Linking variation in species' traits to large-scale environmental gradients can lend insight into the evolutionary processes that have shaped functional diversity and future responses to environmental change. Here, we ask how heat and cold tolerance vary as a function of latitude, elevation and climate extremes, using an extensive global dataset of ectotherm and endotherm thermal tolerance limits, while accounting for methodological variation in acclimation temperature, ramping rate and duration of exposure among studies. We show that previously reported relationships between thermal limits and latitude in ectotherms are robust to variation in methods. Heat tolerance of terrestrial ectotherms declined marginally towards higher latitudes and did not vary with elevation, whereas heat tolerance of freshwater and marine ectotherms declined more steeply with latitude. By contrast, cold tolerance limits declined steeply with latitude in marine, intertidal, freshwater and terrestrial ectotherms, and towards higher elevations on land. In all realms, both upper and lower thermal tolerance limits increased with extreme daily temperature, suggesting that different experienced climate extremes across realms explain the patterns, as predicted under the Climate Extremes Hypothesis. Statistically accounting for methodological variation in acclimation temperature, ramping rate and exposure duration improved model fits, and increased slopes with extreme ambient temperature. Our results suggest that fundamentally different patterns of thermal limits found among the earth's realms may be largely explained by differences in episodic thermal extremes among realms, updating global macrophysiological 'rules'. This article is part of the theme issue 'Physiological diversity, biodiversity patterns and global climate change: testing key hypotheses involving temperature and oxygen'.


Asunto(s)
Eucariontes/fisiología , Termotolerancia , Aclimatación , Altitud , Animales , Evolución Biológica , Frío , Eucariontes/genética , Calor , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...